The O2 sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe-4S] to [2Fe-2S] conversion.

نویسندگان

  • Adrian J Jervis
  • Jason C Crack
  • Gaye White
  • Peter J Artymiuk
  • Myles R Cheesman
  • Andrew J Thomson
  • Nick E Le Brun
  • Jeffrey Green
چکیده

Fumarate and nitrate reduction regulatory (FNR) proteins are bacterial transcription factors that coordinate the switch between aerobic and anaerobic metabolism. In the absence of O(2), FNR binds a [4Fe-4S](2+) cluster (ligated by Cys-20, 23, 29, 122) promoting the formation of a transcriptionally active dimer. In the presence of O(2), FNR is converted into a monomeric, non-DNA-binding form containing a [2Fe-2S](2+) cluster. The reaction of the [4Fe-4S](2+) cluster with O(2) has been shown to proceed via a 2-step process, an O(2)-dependent 1-electron oxidation to yield a [3Fe-4S](+) intermediate with release of 1 Fe(2+) ion, followed by spontaneous rearrangement to the [2Fe-2S](2+) form with release of 1 Fe(3+) and 2 S(2-) ions. Here, we show that replacement of Ser-24 by Arg, His, Phe, Trp, or Tyr enhances aerobic activity of FNR in vivo. The FNR-S24F protein incorporates a [4Fe-4S](2+) cluster with spectroscopic properties similar to those of FNR. However, the substitution enhances the stability of the [4Fe-4S](2+) cluster in the presence of O(2). Kinetic analysis shows that both steps 1 and 2 are slower for FNR-S24F than for FNR. A molecular model suggests that step 1 of the FNR-S24F iron-sulfur cluster reaction with O(2) is inhibited by shielding of the iron ligand Cys-23, suggesting that Cys-23 or the cluster iron bound to it is a primary site of O(2) interaction. These data lead to a simple model of the FNR switch with physiological implications for the ability of FNR proteins to operate over different ranges of in vivo O(2) concentrations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of sulfide release from the oxygen-sensing [4Fe-4S] cluster of FNR.

The Escherichia coli FNR protein regulates the transcription of >100 genes in response to environmental O2, thereby coordinating the response to anoxia. Under O2-limiting conditions, FNR binds a [4Fe-4S]2+ cluster through four cysteine residues (Cys20, Cys23, Cys29, Cys122). The acquisition of the [4Fe-4S]2+ cluster converts FNR into the transcriptionally active dimeric form. Upon exposure to O...

متن کامل

Reversible cycling between cysteine persulfide-ligated [2Fe-2S] and cysteine-ligated [4Fe-4S] clusters in the FNR regulatory protein.

Fumarate and nitrate reduction (FNR) regulatory proteins are O(2)-sensing bacterial transcription factors that control the switch between aerobic and anaerobic metabolism. Under anaerobic conditions [4Fe-4S](2+)-FNR exists as a DNA-binding homodimer. In response to elevated oxygen levels, the [4Fe-4S](2+) cluster undergoes a rapid conversion to a [2Fe-2S](2+) cluster, resulting in a dimer-to-mo...

متن کامل

Influence of association state and DNA binding on the O2-reactivity of [4Fe-4S] fumarate and nitrate reduction (FNR) regulator

The fumarate and nitrate reduction (FNR) regulator is the master switch for the transition between anaerobic and aerobic respiration in Escherichia coli. Reaction of dimeric [4Fe-4S] FNR with O2 results in conversion of the cluster into a [2Fe-2S] form, via a [3Fe-4S] intermediate, leading to the loss of DNA binding through dissociation of the dimer into monomers. In the present paper, we repor...

متن کامل

Mössbauer spectroscopy as a tool for the study of activation/inactivation of the transcription regulator FNR in whole cells of Escherichia coli.

The global regulator FNR (for fumarate nitrate reduction) controls the transcription of >100 genes whose products facilitate adaptation of Escherichia coli to growth under O2-limiting conditions. Previous Mössbauer studies have shown that anaerobically purified FNR contains a [4Fe-4S]2+ cluster that, on exposure to oxygen, is converted into a [2Fe-2S]2+ cluster, a process that decreases DNA bin...

متن کامل

Control of FNR function of Escherichia coli by O2 and reducing conditions.

The synthesis of the enzymes constituting the electron transport chain of Escherichia coli is controlled by electron acceptors in order to achieve high ATP yields and high metabolic rates as well. High ATP yields (or efficiency) are obtained by the use of electron acceptors for respiration which allow high ATP yields, preferentially O2, and nitrate in the absence of O2. The rate of metabolism i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 12  شماره 

صفحات  -

تاریخ انتشار 2009